FILE COPY

1 April 2008

Reference: 0079387

Mr. Robert Schelmerdeine Wayland Meadows Limited Partnership c/o Levco, Inc. 145 Rosemary Street Needham, MA 02494

Re:

Transmittal of Groundwater Analytical Data

Former Raytheon Facility 430 Boston Post Road, Wayland, Massachusetts

Dear Mr. Schelmerdeine:

On behalf of Raytheon Company (Raytheon), Environmental Resources Management (ERM) is submitting the results of groundwater sample analyses from the Former Raytheon Facility located at 430 Boston Post Road in Wayland, Massachusetts (Site). The results are submitted pursuant to 310 CMR 40.1403(10) of the Massachusetts Contingency Plan (MCP).

ERM collected groundwater samples from 2 wells on portions of the Site within the boundaries of your property on 6 March 2008. The two samples were submitted for laboratory analysis of volatile organic compounds, total organic carbon, and dissolved methane, ethane, and ethene gases. One of the samples was also submitted for laboratory analysis for total phosphorus, sulfate, nitrate, dissolved iron, and Q-gene-Trac DHE and VC. Sample analysis was conducted by three laboratories, Alpha Woods Hole Laboratories of Westborough, Massachusetts, Microseeps Inc. of Pittsburgh Pennsylvania, and SiREM Laboratory of Guelph, Ontario. Analytical laboratory reports are attached to this letter. This analytical data will be provided to the Massachusetts Department of Environmental Protection in the next required MCP submittal.

Raytheon has implemented the Public Involvement Process in accordance with MCP 310 CMR 40.1405. Documents pertaining to the Site can be found at the Board of Health, the Wayland Public Library Public Involvement Plan files, or at www.ermne.com (username = raytheon, password = wayland).

Environmental Resources Management

399 Boylston Street 6th Floor Boston, MA 02116 (617) 646-7800 (617) 267-6447 (fax)

Mr. Schelmerdeine Reference: 0079387 1 April 2008 Page 2

If you have any questions or comments, please contact the undersigned at (617) 646-7800 or Louis Burkhardt, Raytheon Company, at (978) 436-8238.

Sincerely,

John C. Drobinski, P.G., LSP

Principal-in-Charge

FOR Jeremy J. Picard, P.G.

Project Manager

Enclosures: BWSC-123 - Notice of Environmental Sampling

Alpha Woods Hole Laboratories Reports

Microseeps Inc. Laboratory Reports

SiREM Laboratory Reports

Cc: Louis Burkhardt, Raytheon Company

Ben Gould, CMG Environmental

PIP Repositories

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

BWSC 123

This Notice is Related to Release Tracking Number

1	3
	0

22408

A. The address of the disposal site related to this Notice and Release Tracking Number (provided above):
1. Street Address: 430 Boston Post Road
City/Town: Wayland Zip Code: 01778
B. This notice is being provided to the following party:
1. Name: Congress Group
2. Street Address: 33 Arch Street
City/Town: Boston Zip Code: 02110
C. This notice is being given to inform its recipient (the party listed in Section B):
✓ 1. That environmental sampling will be/has been conducted at property owned by the recipient of this notice.
2. Of the results of environmental sampling conducted at property owned by the recipient of this notice.
√ 3. Check to indicate if the analytical results are attached. (If item 2. above is checked, the analytical results from the environmental sampling must be attached to this notice.)
D. Location of the property where the environmental sampling will be/has been conducted:
1. Street Address: 430 Boston Post Road
City/Town: Wayland Zip Code: 01778
2. MCP phase of work during which the sampling will be/has been conducted:
☐ Immediate Response Action ☐ Release Abatement Measure ☐ Utility-related Abatement Measure ☐ Phase I Initial Site Investigation ☐ Phase II Comprehensive Site Assessment ☐ Other ☐ (specify) ☐ Phase III Feasibility Evaluation ☐ Phase IV Remedy Implementation Plan ☐ Phase V/Remedy Operation Status ☐ Post-Class C Operation, Maintenance and Monitoring ☐ Other ☐ (specify)
3. Description of property where sampling will be/has been conducted:
☐ residential ☐ commerical ☒ industrial ☐ school/playground ☐ Other(specify)
4. Description of the sampling locations and types (e.g., soil, groundwater) to the extent known at the time of this notice.
Collection of groundwater samples from existing monitoring wells.
E. Contact information related to the party providing this notice: Contact Name: Louis J. Burkhardt
Street Address: 880 Technology Park Drive, MS 2-2124-01
City/Town: Billerica Zip Code: 01821
Telephone: (978) 436-8238 Email: louis_j_burkhardt@raytheon.com

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

MASSACHUSETTS REGULATIONS THAT REQUIRE THIS NOTICE

This notice is being provided pursuant to the Massachusetts Contingency Plan and the notification requirement at 310 CMR 40.1403(10). The Massachusetts Contingency Plan is a state regulation that specifies requirements for parties who are taking actions to address releases of chemicals (oil or hazardous material) to the environment.

THE PERSON(S) PROVIDING THIS NOTICE

This notice has been sent to you by the party who is addressing a release of oil or hazardous material to the environment at the location listed in **Section A** on the reverse side of this form. (The regulations refer to the area where the oil or hazardous material is present as the "disposal site".)

PURPOSE OF THIS NOTICE

When environmental samples are taken as part of an investigation under the Massachusetts Contingency Plan at a property on behalf of someone other than the owner of the property, the regulations require that the property owner (listed in **Section B** on the reverse side of this form) be given notice of the environmental sampling. The regulations also require that the property owner subsequently receive the analytical results following the analysis of the environmental samples.

Section C on the reverse side of this form indicates the circumstance under which you are receiving this notice at this time. If you are receiving this notice to inform you of the analytical results following the analysis of the environmental samples, you should also have received, as an attachment, a copy of analytical results. These results should indicate the number and type(s) of samples (e.g., soil, groundwater) analyzed, any chemicals identified, and the measured concentrations of those chemicals.

Section D on the reverse side of this form identifies the property where the environmental sampling will be/has been conducted, provides a description of the sampling locations within the property, and indicates the phase of work under the Massachusetts Contingency Plan regulatory process during which the samples will be/were collected.

FOR MORE INFORMATION

Information about the general process for addressing releases of oil or hazardous material under the Massachusetts Contingency Plan and related public involvement opportunities may be found at http://www.mass.gov/dep/cleanup/oview.htm. For more information regarding this notice, you may contact the party listed in **Section E** on the reverse side of this form. Information about the disposal site identified in Section A is also available in files at the Massachusetts Department of Environmental Protection. See http://mass.gov/dep/about/region/schedule.htm if you would like to make an appointment to see these files. Please reference the **Release Tracking Number** listed in the upper right hand corner on the reverse side of this form when making file review appointments.

ANALYTICAL REPORT

Lab Number: L0803223

Client: ERM-New England

399 Boylston Street

6th Floor

Boston, MA 02116

ATTN: Jason Flattery

Project Name: RAYTHEON-WAYLAND

Project Number: 0079387 Report Date: 03/14/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (200305), NJ (MA935), RI (LAO00065), ME (2006012), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: RAYTHEON-WAYLAND Lab Number: L0803223

Project Number: 0079387 **Report Date:** 03/14/08

Alpha Sample ID	Client ID	Sample Location
L0803223-01	DEP-19M-20080306-01	WAYLAND, MA
L0803223-02	MW-264M-20080306-01	WAYLAND, MA

Project Name: RAYTHEON-WAYLAND Lab Number: L0803223

Project Number: 0079387 Report Date: 03/14/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

Α	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A
A re	sponse to questions E and F is required for "Presumptive Certainty" status	
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L0803223

Project Name: RAYTHEON-WAYLAND Lab Number:

Project Number: 0079387 Report Date: 03/14/08

Case Narrative

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

MCP Related Narratives

Report Submission

The analysis of Volatile Organics by Method 8260B was performed at our Mansfield facility. The report is included as an addendum, and the results can be viewed on ADEx under Alpha Job L0803479.

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

Metals

In reference to question F:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/14/08

ANALYTICAL TOTAL

METALS

Project Name: RAYTHEON-WAYLAND Lab Number: L0803223

Project Number: 0079387 Report Date: 03/14/08

SAMPLE RESULTS

Lab ID: Date Collected: 03/06/08 14:45

Client ID: MW-264M-20080306-01 Date Received: 03/07/08 Sample Location: WAYLAND, MA Field Prep: Field FIltered

Matrix: Water

Dilution Date Date Prep Analytical Method **Factor** Prepared Analyzed Method Parameter Result Qualifier Units RDL Analyst Dissolved Metals by MCP 6000/7000 series Iron, Dissolved 0.05 03/08/08 13:45 03/10/08 13:43 EPA 3005A 60,6010B 11 mg/l 1 ΑI

Project Name: RAYTHEON-WAYLAND Lab Number: L0803223

Project Number: 0079387 Report Date: 03/14/08

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** Units **RDL Factor Prepared Analyzed** Dissolved Metals by MCP 6000/7000 series for sample(s): 02 Batch: WG313976-1 Iron, Dissolved ND mg/l 0.05 03/08/08 13:45 03/10/08 13:13 60,6010B ΑI

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

RAYTHEON-WAYLAND

Lab Number: L0803223

Project Number: 0079387 Report Date: 03/14/08

Parameter	LCS %Recovery		LCSD %Recovery	%	Recovery Limits	RPD	RPD Limits
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	02	Batch: WG31	13976-2	WG313976-3		
Iron, Dissolved	94		92		80-120	2	20

Project Name:

INORGANICS & MISCELLANEOUS

Project Name: RAYTHEON-WAYLAND

TATTILON WATEAU

Lab Number:

L0803223

Project Number: 0079387

Report Date:

03/14/08

SAMPLE RESULTS

Lab ID: L0803223-01

Client ID: DEP-19M-20080306-01

Sample Location:

WAYLAND, MA

Matrix:

Water

Date Collected:

03/06/08 16:15

Date Received:

03/07/08

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry									
Total Organic Carbon	1.0		mg/l	0.50	1	-	03/14/08 06:20	1,9060	DW

Project Name: RAYTHEON-WAYLAND Lab Number:

L0803223 **Project Number: Report Date:** 03/14/08 0079387

SAMPLE RESULTS

Lab ID: L0803223-02 Date Collected: 03/06/08 14:45

MW-264M-20080306-01 Client ID: Date Received: 03/07/08 WAYLAND, MA Field Flltered Sample Location: Field Prep:

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry									
Nitrogen, Nitrate	ND		mg/l	0.10	1	-	03/07/08 21:02	30,4500NO3-F	DD
Phosphorus, Total	0.05		mg/l	0.01	1	-	03/11/08 15:00	30,4500P-E	HS
Sulfate	28		mg/l	10	1	03/11/08 14:30	03/11/08 14:30	1,9038	ST
Total Organic Carbon	1.3		mg/l	0.50	1	-	03/14/08 06:20	1,9060	DW

Project Name: RAYTHEON-WAYLAND Lab Number: L0803223

Project Number: 0079387 Report Date: 03/14/08

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	for sample(s): 02	Batch:	WG313918	3-2					
Nitrogen, Nitrate	ND		mg/l	0.10	1	-	03/07/08 20:38	30,4500NO3-I	- DD
General Chemistry	for sample(s): 02	Batch:	WG314166	6-1					
Sulfate	ND		mg/l	10	1	03/11/08 14:30	03/11/08 14:30	1,9038	ST
General Chemistry	for sample(s): 02	Batch:	WG314220)-1					
Phosphorus, Total	ND		mg/l	0.01	1	-	03/11/08 15:00	30,4500P-E	HS
General Chemistry	for sample(s): 01-	-02 Bato	ch: WG314	534-1					
Total Organic Carbon	ND		mg/l	0.50	1	-	03/14/08 06:20	1,9060	DW

Lab Control Sample Analysis Batch Quality Control

Lab Number:

L0803223

03/14/08

0079387

RAYTHEON-WAYLAND

Project Name:

Project Number:

Report Date:

Parameter		LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Associated sample(s): 02	2 Batch:	WG313918-1				
Nitrogen, Nitrate		102	-	90-110	-	
Associated sample(s): 02	2 Batch:	WG314166-2				
Sulfate		105	-	84-108	-	
Associated sample(s): 02	2 Batch:	WG314220-2				
Phosphorus, Total		105	-	85-115	-	
Associated sample(s): 01	I-02 Bat	ch: WG314534-2				
Total Organic Carbon		98	-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: RAYTHEON-WAYLAND

Project Number: 0079387

Lab Number:

L0803223

Report Date:

03/14/08

Parameter	Native Sample MS	S Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Associated sample(s): 02	QC Batch ID: WG313	918-3	QC Sample: L0	803212-02	Client ID: MS S	Sample			
Nitrogen, Nitrate	11	4	15	100	-	-	83-120	-	6
Associated sample(s): 02	QC Batch ID: WG314	166-3 C	QC Sample: L0	803236-11	Client ID: MS S	Sample			
Sulfate	25	40	70	112	-	-	55-147	-	14
Associated sample(s): 02	QC Batch ID: WG314	220-4	QC Sample: L0	803236-02	Client ID: MS S	Sample			
Phosphorus, Total	ND	0.5	0.49	99	-	-	80-120	-	20
Associated sample(s): 01-0	02 QC Batch ID: WG3	314534-3	QC Sample:	L0803236-0	6 Client ID: M	IS Sample			
Total Organic Carbon	1.2	4	5.0	94	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: RAYTHEON-WAYLAND

Project Number: 0079387

Lab Number:

L0803223

Report Date:

03/14/08

Parameter		ļ	Native Sample	Duplicate Sample	e Units	RPD	RPD Limits
Associated sample(s): 02	QC Batch ID:	WG313918-4	QC Sample: L0	803212-01 Client ID: DU	P Sample		
Nitrogen, Nitrate			12	12	mg/l	0	6
Associated sample(s): 02	QC Batch ID:	WG314166-4	QC Sample: L0	803236-11 Client ID: DU	P Sample		
Sulfate			25	24	mg/l	4	14
Associated sample(s): 02	QC Batch ID:	WG314220-3	QC Sample: L0	803236-01 Client ID: DU	P Sample		
Phosphorus, Total			0.04	0.04	mg/l	5	20
Associated sample(s): 01-0	2 QC Batch	ID: WG314534	-4 QC Sample:	L0803236-04 Client ID:	DUP Sample		
Total Organic Carbon			1.1	1.0	mg/l	10	20

Project Name: RAYTHEON-WAYLAND Lab Number: L0803223

Project Number: 0079387 Report Date: 03/14/08

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal A Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0803223-01A	Vial HCl preserved	Α	N/A	2.2C	Υ	Absent	SUB-MAN-8260
L0803223-01B	Vial HCI preserved	Α	N/A	2.2C	Υ	Absent	SUB-MAN-8260
L0803223-01C	Vial H2SO4 preserved	Α	N/A	2.2C	Υ	Absent	TOC-9060
L0803223-01D	Vial H2SO4 preserved	Α	N/A	2.2C	Υ	Absent	TOC-9060
L0803223-02A	Vial HCI preserved	Α	N/A	2.2C	Υ	Absent	SUB-MAN-8260
L0803223-02B	Vial HCI preserved	Α	N/A	2.2C	Υ	Absent	SUB-MAN-8260
L0803223-02C	Vial H2SO4 preserved	Α	N/A	2.2C	Υ	Absent	TOC-9060
L0803223-02D	Vial H2SO4 preserved	Α	N/A	2.2C	Υ	Absent	TOC-9060
L0803223-02E	Plastic 250ml HNO3 preserved	Α	<2	2.2C	Υ	Absent	MCP-FE-6010S
L0803223-02F	Plastic 500ml unpreserved	Α	7	2.2C	Υ	Absent	NO3-4500,SO4-9038
L0803223-02G	Plastic 500ml H2SO4 preserved	Α	<2	2.2C	Υ	Absent	TPHOS-4500

Project Name:RAYTHEON-WAYLANDLab Number:L0803223Project Number:0079387Report Date:03/14/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

Report Format: Not Specified

Project Name:RAYTHEON-WAYLANDLab Number:L0803223Project Number:0079387Report Date:03/14/08

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.

- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

PLEASEANSWERQUESTIONSABOVEI IS YOUR PROJECT MA MCP or CT RCP? FORMNO:01-01 (rev. 10-0CT-05)				/	2 MW 2	03223.1 DEP-	(Lab Use Only)		Other Project Specific Requirements/Comments/Detection Limits:	Email: , These samples have been previously analyzed by Alpha	Fax: 617-267-6447	Phone: 617-1046-7800	B3(+5) MA 02116	Address: 200 By 1) Ch	Clant + CAA A CAC	FAX: 508-898-9193 FAX: 508-822-3283	ì	
P? Afulli					MW-264M-20080506-316/08 14:45	1911-20080552i-01	Sample ID		uirements/Comments/D		7447		ALPH.	The Project Ma				CHAIN OF CUSTODY
Relinquished By:						3/6/23 /645	Date Time		etection Limits:	30		Turn-Around Time	ALPHA Quote #:	Project Manager: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Project to Committee Way and MM	Project I ocation: INTA INTA INTA	Project Information	
Preservative 3 Date/Time	(7W EB 2	GW JDF 2	Matrix Initials		NAL	Time:	□ RUSH (only confirmed if pre-approved!)	X	3.					PAGEOFDate
Received By:	3		/		1 1 2	2	75/5/7	PRIBLE ENTER S. F.C.	ZCO SONO SONO SONO SONO SONO SONO SONO SO	(KV. 15)	Yes Mo Are CT RCP	as D No Are MCP Ar	MAMCPPRESUMPTIVE CER	State /Fed Program	ry Requi		Report Information - Data Deliverables	Date Rec'd in Lab: 3/7/08
Date(Tippe) (3) 105 1718							/ / / /				Are CT RCP (Reasonable Confidence Protocols) Required?	Are MCP Analytical Methods Required?	TAINTY CTREASON	Criteria	eport Limits		Y 1	
Please print clearly, legibly and completely. Samples can not be logged in and turnaround time cloc will not start until any ambiguities of resolved. All samples submitted as subject to Alpha's Payment Termits See reverse side.							Sample Specific Comments	Preservation Lab to do (Please specify below)	M.One	SAMPLE HANDLING	Protocols) Required?	17	ESUMPTIVE CERTAINTY CTREASONABLE CONFIDENCE PROTOCOL:			_	BillingInformation ☑ Same as Client info PO#:	ALPHA Job#: 20803223

ANALYTICAL REPORT

Prepared for: Alpha Analytical - Westborough 8 Walkup Drive Westborough, MA 01581

Project:

L0803223 - ERM BOSTON

ETR:

0803046

Report Date:

March 14, 2008

Certifications and Accreditations
Massachusetts M-MA030
Connecticut PH-0141
New Hampshire 2206
Rhode Island LAO00289
New Jersey MA015
Maine MA0030
New York 11627
Louisiana 03090
Florida E87814
Pennsylvania 68-02089
Army Corps of Engineers
Department of the Navy

This report shall not be reproduced except in full, without written approval from the laboratory.

Sample ID Cross Reference

ANALYTICAL

Client: Alpha Analytical - Westborough

Project: L0803223 - ERM BOSTON

Lab Code: MA00030

ETR: 0803046

Lab Sample ID	Client Sample ID
0803046-01	DEP-19M-20080306-01
0803046-02	MW-264M-20080306-01

MADEP MCP Analytical Method Report Certification Form

Laboratory Name:			Alpha Analyti	cal				
	Project Number:		08030					
	Project Location:			MCP RTN #1:				
	This Form pr	rovides certifications f	or the following d	ata set: [Laboratory	Sample ID Numb	er(s)[:		
	0803046-01	through 0803046-02						
Sa	mple Matrices	s: Groundwater	Soil/Sedimen	t Drinking Wa	ter Other:			
	CP SW-846 M	ethods used (as specifi	ed in MADEP Co	mpendium of Analy	tical Methods)			
_	8260B (X)	8151A ()	8330 ()	6010B ()	7470A/1A ()			
	8270C ()	8081A ()	VPH ()	6020 ()	9014M ² ()			
	8082 ()	8021B ()	EPH ()	7000 S ³ ()	Other:			
		racking Number (RTN), if k						
		ethod 9014 or MADEP Phys thods 7000 Series. List indiv						
L								
	An affirm	ative response to quest	ion A, B, C and D	is required for "Pres	umptive Certainty'	' status.		
A		ples received by the laborate ocumentation for the data	-	consistent with that desc	ribed on the Chain-	Yes	No ¹	
В	followed, inc	/QC procedures required luding the requirement terformance standards or g	o note and discuss			Yes	No¹	
C	as described	included in this report m in Section 2.0 (a), (b), (d Quality Control Guideli	(c) and (d) of the I	MADEP document CA	M VII A, "Quality	Yes	No ¹	
D	VPH and E modifications	EPH methods only: Was (see Section 11.3 of resp	s the VPH or EP: ective Methods)?	H method conducted	without significant	Yes	No ¹	
	A re	esponse to questions E	and F below is req	uired for "Presumpti	ve Certainty" statu	is.		
E	Were all anal achieved?	ytical QC performance sta	andards and recomm	endations for the specif	ied methods	Yes	No ¹	
F	Were results for all analyte-list compounds/elements for the specified method(s) reported? Yes No 1							
***************************************	¹ All N	egative responses must be	addressed in an att	ached Environmental L	aboratory case narra	itive.		
-	_	ed, attest under the pair					-	

Alpha Analytical F:/Shared/MCP/Analytical Report Certification Form.doc

Printed Name: Peter Henriksen

my knowledge and belief, accurate and complete.

3-14-08

Project Manager

Position:

Date:

Signature: () 2

CASE NARRATIVE

Alpha Analytical

ETR: 0803046

Project: L0803223-ERM BOSTON

All analyses were performed according to Alpha Analytical quality assurance program and documented Standard Operating Procedures (SOPs). The analytical results contained in this report were performed within-holding time, and with appropriate quality control measures, except where noted. All soil/sediment results are reported on a dry weight basis unless otherwise noted. A summary of all state and federal accreditations is provided within this report. Blank correction of results is not performed in the laboratory for any parameter. Alpha Analytical certifies that the test results within meet all of the requirements of NELAC, for all NELAC accredited parameters.

Volatile Organics by 8260

01 11/1

- 1. The initial calibration had values for compounds outside of the 15% RSD QC advisory limit. Refer to the Form VI Initial Calibration Summary report for specific outliers. This initial calibration meets the acceptability criteria.
- 2. Per client request, only a subset of the MCP analyte list for SW-846 Method 8260B Volatile Organic Compounds by GC/MS were reported.

The enclosed results of analyses are representative of the samples as received by the laboratory. Alpha Analytical makes no representations or certifications as to the method of sample collection, sample identification, or transporting/handling procedures used prior to the receipt of samples by Alpha Analytical. To the best of my knowledge, the information contained in this report is accurate and complete. For any questions regarding this report, please contact the signatory below at 508-822-9300.

Approved by:	Title:	Project Manager	Date:	_3/14/08_	
--------------	--------	-----------------	-------	-----------	--

i

VOLATILE ORGANICS

Client:

Alpha Analytical - Westborough

Project: Client ID:

Matrix:

L0803223 - ERM BOSTON

DEP-19M-20080306-01 N/A

Water

SDG:

Lab Code: MA00030

ETR: 0803046

Lab ID: 0803046-01

Associated Blank: VW031208B02

Concentration Units: µg/L

						1	
			Sample	Final			
Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst	
03/06/08	03/11/08	03/12/08	5	5	1	ALM	

N/A

Parameter	Result
Dichlorodifluoromethane	2.00 U
Chloromethane	2.00 U
Vinyl chloride	2.00 U
Chloroethane	2.00 U
1,1-Dichloroethene	2.00 U
Methylene chloride	5.00 U
trans-1,2-Dichloroethene	2.00 U
1,1-Dichloroethane	2.00 U
cis-1,2-Dichloroethene	14.7
1,1,1-Trichloroethane	2.00 U
Carbon tetrachloride	2.00 U
1,2-Dichloroethane	2.00 U
Trichloroethene	2,65
1,2-Dichloropropane	2,00 U
Bromodichloromethane	2.00 U
cis-1,3-Dichloropropene	2.00 U
trans-1,3-Dichloropropene	2.00 U
1,1,2-Trichloroethane	2.00 U
Tetrachloroethene	2.00 U
1,3-Dichloropropane	2.00 U
Dibromochloromethane	2.00 U
1,2-Dibromoethane	2.00 U
Chlorobenzene	2.00 U
1,1,1,2-Tetrachloroethane	2.00 U
Bromoform	2.00 U
1,1,2,2-Tetrachloroethane	2.00 U
2-Chlorotoluene	2.00 U
4-Chlorotoluene	2.00 U
1,3-Dichlorobenzene	2.00 U
1,4-Dichlorobenzene	2.00 U
1,2-Dichlorobenzene	2.00 U
1,2,4-Trichlorobenzene	2.00 U
Hexachlorobutadiene	2.00 U

Surrogate	% Recovery	Acceptance Range (%)
Dibromofluoromethane	101	70-130
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	90	70-130
4-Bromofluorobenzene	98	70-130

N/A - Not Applicable

Client: Project:

Matrix:

Alpha Analytical - Westborough

L0803223 - ERM BOSTON

MW-264M-20080306-01 Client ID: Case: N/A

Water

SDG:

N/A

Lab Code: MA00030

ETR: 0803046

Lab ID: 0803046-02

Associated Blank: VW031308B08

Concentration Units: µg/L

ſ				Sample	Final		
	Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
Ì	03/06/08	03/11/08	03/13/08	5	5	1	ALM

Parameter	Result
Dichlorodifluoromethane	2.00 U
Chloromethane	2.00 U
Vinyl chloride	2.74
Chloroethane	2.00 U
1,1-Dichloroethene	2.00 U
Methylene chloride	5.00 U
trans-1,2-Dichloroethene	2.00 U
1,1-Dichloroethane	2.00 U
cis-1,2-Dichloroethene	48.9
1,1,1-Trichloroethane	2.00 U
Carbon tetrachloride	2.00 U
1,2-Dichloroethane	2.00 U
Trichloroethene	43.9
1,2-Dichloropropane	2.00 U
Bromodichloromethane	2.00 U
cis-1,3-Dichloropropene	2.00 U
trans-1,3-Dichloropropene	2.00 U
1,1,2-Trichloroethane	2.00 U
Tetrachloroethene	8.05
1,3-Dichloropropane	2.00 U
Dibromochloromethane	2.00 U
1,2-Dibromoethane	2.00 U
Chlorobenzene	2.00 U
1,1,1,2-Tetrachloroethane	2.00 U
Bromoform	2.00 U
1,1,2,2-Tetrachloroethane	2.00 U
2-Chlorotoluene	2.00 U
4-Chlorotoluene	2.00 U
1,3-Dichlorobenzene	2.00 U
1,4-Dichlorobenzene	2.00 U
1,2-Dichlorobenzene	2.00 U
1,2,4-Trichlorobenzene	2.00 U
Hexachlorobutadiene	2.00 U

Surrogate	% Recovery	Acceptance Range (%)
Dibromofluoromethane	98	70-130
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	88	70-130
4-Bromofluorobenzene	94	70-130

N/A - Not Applicable

Client:

Alpha Analytical - Westborough

Project:

Matrix:

L0803223 - ERM BOSTON

Client ID: LCase:

Blank N/A Water

SDG:

N/A

Lab Code: MA00030

ETR: 0803046

Lab ID: VW031208B02 Associated Blank: N/A

Concentration Units: µg/L

-	40-13-0			Sample	Final		
	Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
	N/A	N/A	03/12/08	5	5	1	ALM

Parameter	Result
Dichlorodifluoromethane	2,00 U
Chloromethane	2.00 U
Vinyl chloride	2.00 U
Chloroethane	2.00 U
1,1-Dichloroethene	2.00 U
Methylene chloride	5.00 U
trans-1,2-Dichloroethene	2.00 U
1,1-Dichloroethane	2.00 U
cis-1,2-Dichloroethene	2.00 U
1,1,1-Trichloroethane	2.00 U
Carbon tetrachloride	2.00 U
1,2-Dichloroethane	2.00 U
Trichloroethene	2.00 U
1,2-Dichloropropane	2.00 U
Bromodichloromethane	2.00 U
cis-1,3-Dichloropropene	2.00 U
trans-1,3-Dichloropropene	2.00 U
1,1,2-Trichloroethane	2.00 U
Tetrachloroethene	2.00 U
1,3-Dichloropropane	2.00 U
Dibromochloromethane	2.00 U
1,2-Dibromoethane	2.00 U
Chlorobenzene	2.00 U
1,1,1,2-Tetrachloroethane	2.00 U
Bromoform	2.00 U
1,1,2,2-Tetrachloroethane	2.00 U
2-Chlorotoluene	2.00 U
4-Chlorotoluene	2.00 U
1,3-Dichlorobenzene	2.00 U
1,4-Dichlorobenzene	2.00 U
1,2-Dichlorobenzene	2.00 U
1,2,4-Trichlorobenzene	2.00 U
Hexachlorobutadiene	2.00 U

Surrogate	% Recovery	Acceptance Range (%)
Dibromofluoromethane	102	70-130
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	96	70-130

N/A - Not Applicable

Client: Project: Alpha Analytical - Westborough

L0803223 - ERM BOSTON

Blank SDG:

Matrix:

N/A Water Lab Code: MA00030

ETR: 0803046

Lab ID: VW031308B08 Associated Blank: N/A

Concentration Units: $\mu g/L$

Date Collected	Date Received	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
N/A	N/A	03/13/08	5	5	1	ALM

N/A

Parameter	Result
Dichlorodifluoromethane	2.00 U
Chloromethane	2.00 U
Vinyl chloride	2.00 U
Chloroethane	2.00 U
1,1-Dichloroethene	2.00 U
Methylene chloride	5.00 U
trans-1,2-Dichloroethene	2.00 U
1,1-Dichloroethane	2.00 U
cis-1,2-Dichloroethene	2.00 U
1,1,1-Trichloroethane	2.00 U
Carbon tetrachloride	2.00 U
1,2-Dichloroethane	2.00 U
Trichloroethene	2.00 U
1,2-Dichloropropane	2.00 U
Bromodichloromethane	2.00 U
cis-1,3-Dichloropropene	2.00 U
trans-1,3-Dichloropropene	2.00 U
1,1,2-Trichloroethane	2.00 U
Tetrachloroethene	2.00 U
1,3-Dichloropropane	2.00 U
Dibromochloromethane	2.00 U
1,2-Dibromoethane	2.00 U
Chlorobenzene	2.00 U
1,1,1,2-Tetrachloroethane	2.00 U
Bromoform	2.00 U
1,1,2,2-Tetrachloroethane	2.00 U
2-Chlorotoluene	2.00 U
4-Chlorotoluene	2.00 U
1,3-Dichlorobenzene	2.00 U
1,4-Dichlorobenzene	2.00 U
1,2-Dichlorobenzene	2.00 U
1,2,4-Trichlorobenzene	2.00 U
Hexachlorobutadiene	2.00 U

		Acceptance
Surrogate	% Recovery	Range (%)
Dibromofluoromethane	97	70-130
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	96	70-130

N/A - Not Applicable

μg/L

Lab Code: MA00030

Concentration Units:

ETR: 0803046

Form III Spike Recovery Summary Volatile Organics by 8260

Matrix:

Alpha Analytical - Westborough L0803223 - ERM BOSTON

at ID: Laboratory Control Sample

ase: N/A SDG: N/A

Water

ntrol Sample Lab ID: See Below

G: N/A Associated Blank: VW031208B02

				Sample	Final		
1	Date Collected	Date Received	Date Analyzed	Amount (ml)	Volume (ml)	Dilution Factor	Analyst
	N/A	N/A	03/12/08	5	5	1	ALM

VW031208B02 VW031208LCS01 VW031208LCSD01 Lab ID: LCSD RPD % Recovery Blank LCS Conc. % Recovery % RPD Limit Limits Conc. % Recovery **Parameter** Conc. 70-130 108 21.0 105 3 25 Dichlorodifluoromethane 2.00 21.6 19.9 99 6 70-130 2.00 U 21.1 106 25 Chloromethane 111 0 25 70-130 2.00 22.2 22.1 U 111 Vinyl chloride 70-130 23.0 7 25 2.00 U 24.6 123 115 Chloroethane 70-130 19.0 95 1 25 2.00 U 19.3 96 1.1-Dichloroethene 94 0 25 70-130 94 18.8 5.00 U 18.9 Methylene chloride 94 3 25 70-130 2.00 U 19.5 97 18.9 trans-1,2-Dichloroethene 97 94 3 25 70-130 2.00 U 19.5 18.9 1,1-Dichloroethane 19.0 95 4 25 70-130 98 2.00 19.7 cis-1,2-Dichloroethene 19.1 95 4 25 70-130 19.8 99 1,1,1-Trichloroethane 2.00 70-130 2.00 19.4 97 18.7 94 3 25 Carbon tetrachloride 98 25 70-130 98 19.5 1 2.00 19.6 1,2-Dichloroethane 3 25 70-130 19.5 98 20.1 100 Trichloroethene 2.00 U 25 70-130 2.00 U 19.4 97 19.5 97 0 1,2-Dichloropropane 96 3 25 70-130 19.7 99 19.2 2.00 Bromodichloromethane 25 70-130 19.3 96 1 97 cis-1,3-Dichloropropene 2.00 19.4 2 70-130 97 19.1 96 25 trans-1,3-Dichloropropene 2.00 U 19.4 19.4 97 1 25 70-130 19.6 98 2.00 U 1,1,2-Trichloroethane 5 70-130 97 25 20.3 102 19.4 Tetrachloroethene 2.00 U 1 25 70-130 99 19.4 97 2.00 19.7 1,3-Dichloropropane 70-130 2.00 19.6 98 20.0 100 2 25 U Dibromochloromethane 70-130 19.5 98 1 25 19.6 98 1.2-Dibromoethane 2.00 U 70-130 19.7 98 19.2 96 3 25 2.00 U Chlorobenzene 0 25 70-130 19.7 98 2.00 19.7 98 1,1,1,2-Tetrachloroethane 18.7 93 5 25 70-130 98 Bromoform 2.00 U 19.7 70-130 2.00 19.7 99 19.3 96 2 25 U 1,1,2,2-Tetrachloroethane 25 70-130 19.0 95 4 19.8 99 2-Chlorotoluene 2.00 U 4 25 70-130 95 18.3 91 4-Chlorotoluene 2.00 19.0 4 25 70-130 20.0 100 19.2 96 2.00 U 1.3-Dichlorobenzene 1 25 70-130 19.5 97 2.00 19.6 98 U 1,4-Dichlorobenzene 4 25 70-130 19.4 97 1,2-Dichlorobenzene 2.00 U 20.3 101 97 5 25 70-130 20.3 101 19.4 2.00 1,2,4-Trichlorobenzene 11 25 70-130 110 19.5 98 U 21.9 2.00 Hexachlorobutadiene

Surrogate	% Red	covery	Acceptance Range (%)
Dibromofluoromethane	98	98	70-130
1.2-Dichloroethane-d4	97	97	70-130
Toluene-d8	100	102	70-130
4-Bromofluorobenzene	100	99	70-130

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Concentrations reported as calculated values, which includes rounding for significant figures. Percent recoveries and RPD values are calculated from the unrounded result.

Form III **Spike Recovery Summary** Volatile Organics by 8260

Alpha Analytical - Westborough

L0803223 - ERM BOSTON

Case: Matrix: Laboratory Control Sample SDG: N/A

Water

N/A

Lab Code: MA00030

ETR: 0803046 Lab ID: See Below

Associated Blank: VW031308B08

Concentration Units: μg/L

Sample Final Amount (ml) Volume (ml) Dilution Factor Analyst Date Analyzed Date Received Date Collected ALM 5 1 N/A N/A 03/13/08

Lab ID:	VW031308	B08	VW031308LCS04		VW031308LCSD04			1	
	Blank		LCS		LCSD			RPD-%	Recovery
Parameter	Conc.		Conc.	% Recovery	Conc.	% Recovery	% RPD	Limit	Limits
Dichlorodifluoromethane	2.00	U	17.8	89	17.8	89	0	25	70-130
Chloromethane	2.00	U	16.4	82	16.9	85	3	25	70-130
Vinyl chloride	2.00	U	18.3	92	18.5	93	1	25	70-130
Chloroethane	2.00	U	17.4	87	18.0	90	4	25	70-130
1,1-Dichloroethene	2.00	U	20.5	103	20.6	103	0	25	70-130
Methylene chloride	5.00	U	19.9	99	20.3	102	2	25	70-130
trans-1,2-Dichloroethene	2.00	U	18.8	94	20.0	100	6	25	70-130
1,1-Dichloroethane	2.00	U	19.3	96	19.8	99	3	25	70-130
cis-1,2-Dichloroethene	2.00	U	18.4	92	19.4	97	5	25	70-130
1,1,1-Trichloroethane	2.00	U	19.0	95	19.8	99	4	25	70-130
Carbon tetrachloride	2.00	U	19.1	95	19.7	99	3	25	70-130
1,2-Dichloroethane	2.00	U	18.6	93	18.7	94	1	25	70-130
Trichloroethene	2.00	U	19.9	99	20.4	102	3	25	70-130
1,2-Dichloropropane	2.00	U	20.6	103	20.3	102	1	25	70-130
Bromodichloromethane	2.00	U	19.2	96	19.9	100	4	25	70-130
cis-1,3-Dichloropropene	2.00	U	19.7	99	19.7	99	0	25	70-130
trans-1,3-Dichloropropene	2.00	U	19.3	97	19.5	98	1	25	70-130
1,1,2-Trichloroethane	2.00	U	19.8	99	19.8	99	0	25	70-130
Tetrachloroethene	2.00	U	21.3	106	22.2	111	4	25	70-130
1,3-Dichloropropane	2.00	U	19.5	98	19.6	98	0	25	70-130
Dibromochloromethane	2.00	U	19.9	99	20.1	100	1	25	70-130
1,2-Dibromoethane	2.00	U	19.9	99	20.6	103	3	25	70-130
Chlorobenzene	2,00	U	19.6	98	20.0	100	2	25	70-130
1,1,1,2-Tetrachloroethane	2.00	U	20.1	100	20.4	102	2	25	70-130
Bromoform	2.00	U	19.8	99	19.9	99	0	25	70-130
1,1,2,2-Tetrachloroethane	2.00	U	19.5	97	18.8	94	4	25	70-130
2-Chlorotoluene	2.00	U	19.0	95	19.9	100	5	25	70-130
4-Chlorotoluene	2.00	U	19.1	95	19.8	99	4	25	70-130
1,3-Dichlorobenzene	2.00	U	20.0	100	20.7	103	3	25	70-130
1,4-Dichlorobenzene	2.00	U	19.7	98	20.2	101	3	25	70-130
1,2-Dichlorobenzene	2.00	U	19.8	99	20.4	102	3	25	70-130
1,2,4-Trichlorobenzene	2.00	U	20.0	100	20.1	101	1	25	70-130
Hexachlorobutadiene	2.00	U	20.6	103	20.3	102	2	25	70-130

			Acceptance
Surrogate	% Rec	overy	Range (%)
Dibromofluoromethane	96	96	70-130
1,2-Dichloroethane-d4	90	90	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	98	100	70-130

N/A - Not Applicable

U - The analyte was analyzed for but not detected at the sample specific level reported.

Concentrations reported as calculated values, which includes rounding for significant figures. Percent recoveries and RPD values 11/33 11:25 are calculated from the unrounded result.

Supporting Quality Control Results

Form II Surrogate Recovery Volatile Organics by 8260

ANALYTICAL Case:

Alpha Analytical - Westborough L0803223 - ERM BOSTON Client: Project:

Lab Code: MA00030

ETR: 0803046 Matrix: Water

N/A

SDG:

N/A

Client ID	Lab ID	Dibromofluorometha:	ne 1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
LCS	VW031208LCS01	98	97	100	100
LCSD	VW031208LCSD0	1 98	97	102	99
Blank	VW031208B02	102	101	101	96
DEP-19M-20080306-01	0803046-01	101	106	90	98
LCS	VW031308LCS04	96	90	100	98
LCSD	VW031308LCSD0	4 96	90	100	100
Blank	VW031308B08	97	95	98	96
MW-264M-20080306-01	0803046-02	98	98	88	94

N/A - Not Applicable

Surrogate	QC Limit
Dibromofluoromethane	70-130
1,2-Dichloroethane-d4	70-130
Toluene-d8	70-130
4-Bromofluorobenzene	70-130

Form IV Method Blank Summary Volatile Organics by 8260

N/A

Alpha Analytical - Westborough L0803223 - ERM BOSTON

SDG:

N/A

Lab Code: MA00030

ETR: 0803046

Lab ID: VW031208B02

Date Analyzed: 03/12/08 16:51

Client ID	Lab ID	Date/Time Analyzed
LCS	VW031208LCS01	03/12/08 15:19

 LCS
 VW031208LCS01
 03/12/08 15:19

 LCSD
 VW031208LCSD01
 03/12/08 15:50

 DEP-19M-20080306-01
 0803046-01
 03/12/08 17:53

Form IV Method Blank Summary Volatile Organics by 8260

N/A

Alpha Analytical - Westborough L0803223 - ERM BOSTON

SDG:

N/A

Lab Code: MA00030

ETR: 0803046

Lab ID: VW031308B08

Date Analyzed: 03/13/08 18:52

Client ID	Lab ID	Date/Time Analyzed
LCS	VW031308LCS04	03/13/08 17:20
LCSD	VW031308LCSD04	03/13/08 17:50
MW-264M-20080306-01	0803046-02	03/13/08 19:22

$Form\ V$ Tune Summary Volatile Organics by 8260

Alpha Analytical - Westborough **L0803223 - ERM BOSTON**

Lab Code: MA00030

ETR: 0803046

Lab ID: T1031201 Date Analyzed: 03/12/08 08:39

N/A

SDG:

N/A

Target Mass	Relative To Mass	Lower Limit %	Upper Limit %	Relative Abundance %	Raw Abundance	Result
50	95	15	40	21.4	45101	Pass
75	95	30	60	47.1	99181	Pass
95	95	100	100	100	210496	Pass
96	95	5	9	6.6	13976	Pass
173	174	0	2	0	0	Pass
174	95	50	100	69.2	145600	Pass
175	174	5	9	7.7	11160	Pass
176	174	95	101	97.7	142208	Pass
177	176	5	9	6.6	9418	Pass

Client ID	Lab ID	Date/Time Analyzed
Initial Calibration	I1031201	03/12/08 09:10
Initial Calibration	I1031202	03/12/08 09:41
Initial Calibration	I1031204	03/12/08 10:42
Initial Calibration	I1031205	03/12/08 11:13
Initial Calibration	11031206	03/12/08 11:44
Initial Calibration	I1031207	03/12/08 14:17

$Form \ V$ Tune Summary Volatile Organics by 8260

Client: Project:

Alpha Analytical - Westborough L0803223 - ERM BOSTON

Lab Code: MA00030

ETR: 0803046

Lab ID: T1031202

Date Analyzed: 03/12/08 13:47

N/A SDG: N/A

Target Mass	Relative To Mass	Lower Limit %	Upper Limit %	Relative Abundance %	Raw Abundance	Result
50	95	15	40	21.5	44045	Pass
75	95	30	60	46.4	94901	Pass
95	95	100	100	100	204693	Pass
96	95	5	9	6.9	14054	Pass
173	174	0	2	0	0	Pass
174	95	50	100	71.6	146475	Pass
175	174	5	9	7.5	11025	Pass
176	174	95	101	95.6	140075	Pass
177	176	5	9	6.4	8962	Pass

Client ID	Lab ID	Date/Time Analyzed
CCV	C1031201	03/12/08 14:48
LCS	VW031208LCS01	03/12/08 15:19
LCSD	VW031208LCSD01	03/12/08 15:50
Blank	VW031208B02	03/12/08 16:51
DEP-19M-20080306-01	0803046-01	03/12/08 17:53

$Form\ V$ Tune Summary Volatile Organics by 8260

Client: Project: C A LCase:

Alpha Analytical - Westborough **L0803223 - ERM BOSTON**

Lab Code: MA00030

ETR: 0803046

Lab ID: T1031301 Date Analyzed: 03/13/08 08:44

N/A

SDG:

N/A

Target	Relative To Mass	Lower Limit %	Upper Limit %	Relative Abundance	Raw Abundance	Result
Mass			and the same of th		LANGUE A PARTY	
50	95	15	40	24.5	43397	Pass
75	95	30	60	51.1	90472	Pass
95	95	100	100	100	177152	Pass
96	95	5	9	6.1	10803	Pass
173	174	0	2	0	0	Pass
174	95	50	100	63.1	111861	Pass
175	174	5	9	7.8	8708	Pass
176	174	95	101	97.1	108616	Pass
177	176	5	9	6.4	6997	Pass

Client ID	Lab ID	Date/Time Analyzed
Initial Calibration	11031301	03/13/08 11:42
Initial Calibration	I1031302	03/13/08 12:12
Initial Calibration	I1031303	03/13/08 12:43
Initial Calibration	I1031304	03/13/08 13:14
Initial Calibration	I1031305	03/13/08 13:45
Initial Calibration	I1031306	03/13/08 14:15

Form VTune Summary Volatile Organics by 8260

Client: Project:

Alpha Analytical - Westborough L0803223 - ERM BOSTON

Lab Code: MA00030

ETR: 0803046

Lab ID: T1031302

Date Analyzed: 03/13/08 16:18

•		
•		

N/A SDG: N/A

Target Mass	Relative To Mass	Lower Limit %	Upper Limit %	Relative Abundance %	Raw Abundance	Result
50	95	15	40	20.6	42256	Pass
75	95	30	60	47	96448	Pass
95	95	100	100	100	205376	Pass
96	95	5	9	6.5	13449	Pass
173	174	0	2	0	0	Pass
174	95	50	100	68.7	141099	Pass
175	174	5	9	7.9	11150	Pass
176	174	95	101	96.6	136320	Pass
177	176	5	9	6.8	9229	Pass

Client ID	Lab ID	Date/Time Analyzed
CCV	C1031303	03/13/08 16:49
LCS	VW031308LCS04	03/13/08 17:20
LCSD	VW031308LCSD04	03/13/08 17:50
Blank	VW031308B08	03/13/08 18:52
MW-264M-20080306-01	0803046-02	03/13/08 19:22

Client: Project:

Alpha Analytical - Westborough **L0803223 - ERM BOSTON**

Lab Code: MA00030

ETR: 0803046

N/A SDG: N/A

Lab ID	Date/Time Analyzed
I1031201	03/12/08 09:10
I1031202	03/12/08 09:41
I1031204	03/12/08 10:42
11031205	03/12/08 11:13
11031206	03/12/08 11:44
11031207	03/12/08 14:17

		R	esponse Facto	ors				
Parameter	2	5	50	100	200	20	Mean	% RSD
Dichlorodifluoromethane	0.88	1,12	1.34	1.53	1,37	1.51	1.29	19.2ª
Chloromethane	0.99	1.26	1.35	1.54	1.39	1.48	1.34	14.7
Vinyl chloride	0.65	0.84	0.92	1.05	0.99	1.02	0.91	16,3
Chloroethane	0.32	0.43	0.42	0.48	0.23	0.47	0.39	24.5°
1,1-Dichloroethene	1.42	1.48	1.52	1.45	1.34	1.35	1.43	5.1
Methylene chloride		1.17	1.09	1.08	1.04	1.04	1.08	5.1
trans-1,2-Dichloroethene	1.32	1.55	1.56	1.50	1,40	1.39	1.45	6.6
1,1-Dichloroethane	1.80	2.02	1.92	1.87	1.75	1.78	1.86	5.4
cis-1,2-Dichloroethene	1.48	1.61	1.65	1.54	1.51	1.48	1.55	4.6
1,1,1-Trichloroethane	1.30	1.52	1.51	1.48	1.41	1.40	1.44	5.8
Carbon tetrachloride	1.27	1.41	1.39	1.37	1.29	1.30	1.34	4.3
1,2-Dichloroethane	1.41	1.63	1.56	1.53	1.40	1.43	1.50	6.3
Trichloroethene	0.44	0.48	0.47	0.46	0.47	0.45	0.46	3.2
1,2-Dichloropropane	0.48	0.53	0.50	0.49	0.49	0.47	0.49	3.8
Bromodichloromethane	0.66	0.71	0.69	0.68	0.69	0.65	0.68	3.0
cis-1,3-Dichloropropene	0.74	0.82	0.82	0.81	0.80	0.77	0.79	4.0
trans-1,3-Dichloropropene	0.60	0.74	0.75	0.74	0.74	0.68	0.71	8.3
1,1,2-Trichloroethane	0.35	0.43	0.40	0.40	0.40	0.38	0.39	6.8
Tetrachloroethene	0.35	0.38	0.38	0.39	0.41	0.36	0.38	5.3
1,3-Dichloropropane	0.69	0.81	0.77	0.77	0.77	0.73	0.75	5.4
Dibromochloromethane	0.51	0.59	0.61	0.62	0.63	0.57	0.59	7.6
1,2-Dibromoethane	0.46	0.53	0.53	0.54	0.55	0.49	0.52	6.9
Chlorobenzene	0.85	0.90	0.86	0.86	0.88	0.82	0.86	3.0
1,1,1,2-Tetrachloroethane	0.30	0.34	0.35	0.35	0.34	0.32	0.33	5.9
Bromoform	0.18	0.23	0.25	0.25	0.26	0.21	0.23	12.6
1,1,2,2-Tetrachloroethane	0.40	0.45	0.48	0.48	0.47	0.44	0.45	6.9
2-Chlorotoluene	0.80	0.88	0.90	0.89	0.91	0.83	0.87	5.1
4-Chlorotoluene	0.93	1.03	1.07	1.05	1.07	0.95	1.02	5.9
1,3-Dichlorobenzene	0.53	0.57	0.62	0.63	0.64	0.57	0.59	7.4
1,4-Dichlorobenzene	0.54	0.62	0.66	0.66	0.69	0.58	0.63	8.9
1,2-Dichlorobenzene	0.50	0.56	0.62	0.63	0.65	0.56	0.59	9.5
1,2,4-Trichlorobenzene	0.23	0.25	0.30	0.31	0.33	0.27	0.28	13.6

^a - Value outside of QC advisory limits.

N/A

ANALYTICAL Case:

Client: Project:

Alpha Analytical - Westborough L0803223 - ERM BOSTON

Lab Code: MA00030

ETR: 0803046

N/A

SDG:

Lab ID	Date/Time Analyzed
I1031201	03/12/08 09:10
11031202	03/12/08 09:41
11031204	03/12/08 10:42
I1031205	03/12/08 11:13
I1031206	03/12/08 11:44
11031207	03/12/08 14:17

		R	esponse Facto	ors				
Parameter	2	5	50	100	200	20	Mean	% RSD
Hexachlorobutadiene	0.081	0.079	0.092	0.094	0.098	0.085	0.088	8.5
Dibromofluoromethane	0.89	0.90	0.90	0.89	0.82	0.88	0.88	3.3
1,2-Dichloroethane-d4	0.81	0.83	0.83	0.82	0.74	0.81	0.81	4.0
Toluene-d8	1.23	1.24	1.25	1,25	1.26	1.24	1.25	0.9
4-Bromofluorobenzene	0.55	0.56	0.59	0.58	0.57	0.57	0.57	2.4
Average RSD								7.3

Client: Project:

Alpha Analytical - Westborough L0803223 - ERM BOSTON Lab Code: MA00030

ETR: 0803046

ALY TICAL Case:

N/A

SDG:

N/A

Lab ID	Date/Time Analyzed
I1031301	03/13/08 11:42
11031302	03/13/08 12:12
I1031303	03/13/08 12:43
11031304	03/13/08 13:14
I1031305	03/13/08 13:45
-I1031306	03/13/08-14:-15

Parameter 2 5 20 50 100 200 Mean Dichlorodifluoromethane 1.45 1.45 1.52 1.65 1.55 1.35 1.50 Chloromethane 1.78 1.56 1.49 1.64 1.56 1.42 1.58 Vinyl chloride 1.05 1.01 1.09 1.18 1.10 0.97 1.07 Chloroethane 0.59 0.51 0.49 0.54 0.51 0.41 0.51 1,1-Dichloroethene 1.51 1.35 1.36 1.44 1.37 1.22 1.37 Methylene chloride 1.05 1.01 1.08 1.05 0.99 1.04 trans-1,2-Dichloroethene 1.67 1.45 1.45 1.56 1.47 1.31 1.49 1,1-Dichloroethane 2.07 1.87 1.79 1.98 1.83 1.67 1.87 1,1-Dichloroethane 1.70 1.48 1.48 1.56 1.50 1.36 1.51	% RSD
Chloromethane 1.78 1.56 1.49 1.64 1.56 1.42 1.58 Vinyl chloride 1.05 1.01 1.09 1.18 1.10 0.97 1.07 Chloroethane 0.59 0.51 0.49 0.54 0.51 0.41 0.51 1,1-Dichloroethene 1.51 1.35 1.36 1.44 1.37 1.22 1.37 Methylene chloride 1.05 1.01 1.08 1.05 0.99 1.04 trans-1,2-Dichloroethene 1.67 1.45 1.45 1.56 1.47 1.31 1.49 1,1-Dichloroethane 2.07 1.87 1.79 1.98 1.83 1.67 1.87 cis-1,2-Dichloroethane 1.83 1.57 1.59 1.70 1.64 1.45 1.63 1,1,1-Trichloroethane 1.70 1.48 1.48 1.56 1.50 1.36 1.51 Carbon tetrachloride 1.53 1.35 1.34 1.43 1.35 1.23	
Vinyl chloride 1.05 1.01 1.09 1.18 1.10 0.97 1.07 Chloroethane 0.59 0.51 0.49 0.54 0.51 0.41 0.51 1,1-Dichloroethene 1.51 1.35 1.36 1.44 1.37 1.22 1.37 Methylene chloride 1.05 1.01 1.08 1.05 0.99 1.04 trans-1,2-Dichloroethene 1.67 1.45 1.45 1.56 1.47 1.31 1.49 1,1-Dichloroethane 2.07 1.87 1.79 1.98 1.83 1.67 1.87 cis-1,2-Dichloroethane 1.83 1.57 1.59 1.70 1.64 1.45 1.63 1,1-Trichloroethane 1.70 1.48 1.48 1.56 1.50 1.36 1.51 Carbon tetrachloride 1.53 1.35 1.34 1.43 1.35 1.23 1.37 1,2-Dichloroethane 1.64 1.65 1.58 1.71 1.63 1.38	6.9
Chloroethane 0.59 0.51 0.49 0.54 0.51 0.41 0.51 1,1-Dichloroethene 1.51 1.35 1.36 1.44 1.37 1.22 1.37 Methylene chloride 1.05 1.01 1.08 1.05 0.99 1.04 trans-1,2-Dichloroethene 1.67 1.45 1.45 1.56 1.47 1.31 1.49 1,1-Dichloroethane 2.07 1.87 1.79 1.98 1.83 1.67 1.87 cis-1,2-Dichloroethane 1.83 1.57 1.59 1.70 1.64 1.45 1.63 1,1,1-Trichloroethane 1.70 1.48 1.48 1.56 1.50 1.36 1.51 Carbon tetrachloride 1.53 1.35 1.34 1.43 1.35 1.23 1.37 1,2-Dichloroethane 1.64 1.65 1.58 1.71 1.63 1.38 1.60 Trichloroethane 0.58 0.49 0.44 0.49 0.48 0.46	7.9
1,1-Dichloroethene 1.51 1.35 1.36 1.44 1.37 1.22 1.37 Methylene chloride 1.05 1.01 1.08 1.05 0.99 1.04 trans-1,2-Dichloroethene 1.67 1.45 1.45 1.56 1.47 1.31 1.49 1,1-Dichloroethane 2.07 1.87 1.79 1.98 1.83 1.67 1.87 cis-1,2-Dichloroethane 1.83 1.57 1.59 1.70 1.64 1.45 1.63 1,1,1-Trichloroethane 1.70 1.48 1.48 1.56 1.50 1.36 1.51 Carbon tetrachloride 1.53 1.35 1.34 1.43 1.35 1.23 1.37 1,2-Dichloroethane 1.64 1.65 1.58 1.71 1.63 1.38 1.60 Trichloroethane 0.58 0.49 0.44 0.49 0.48 0.46 0.49 1,2-Dichloropropane 0.53 0.50 0.49 0.53 0.51 0.49<	6.8
Methylene chloride 1.05 1.01 1.08 1.05 0.99 1.04 trans-1,2-Dichloroethene 1.67 1.45 1.45 1.56 1.47 1.31 1.49 1,1-Dichloroethane 2.07 1.87 1.79 1.98 1.83 1.67 1.87 cis-1,2-Dichloroethane 1.83 1.57 1.59 1.70 1.64 1.45 1.63 1,1,1-Trichloroethane 1.70 1.48 1.48 1.56 1.50 1.36 1.51 Carbon tetrachloride 1.53 1.35 1.34 1.43 1.35 1.23 1.37 1,2-Dichloroethane 1.64 1.65 1.58 1.71 1.63 1.38 1.60 Trichloroethane 0.58 0.49 0.44 0.49 0.48 0.46 0.49 1,2-Dichloropropane 0.53 0.50 0.49 0.53 0.51 0.49 0.51 Bromodichloromethane 0.73 0.68 0.67 0.75 0.73 0.6	11.8
trans-1,2-Dichloroethene 1.67 1.45 1.45 1.56 1.47 1.31 1.49 1,1-Dichloroethane 2.07 1.87 1.79 1.98 1.83 1.67 1.87 cis-1,2-Dichloroethane 1.83 1.57 1.59 1.70 1.64 1.45 1.63 1,1,1-Trichloroethane 1.70 1.48 1.48 1.56 1.50 1.36 1.51 Carbon tetrachloride 1.53 1.35 1.34 1.43 1.35 1.23 1.37 1,2-Dichloroethane 1.64 1.65 1.58 1.71 1.63 1.38 1.60 Trichloroethene 0.58 0.49 0.44 0.49 0.48 0.46 0.49 1,2-Dichloropropane 0.53 0.50 0.49 0.53 0.51 0.49 0.51 Bromodichloromethane 0.73 0.68 0.67 0.75 0.73 0.69 0.71 cis-1,3-Dichloropropene 0.69 0.68 0.71 0.79 <t< td=""><td>7.1</td></t<>	7.1
I,1-Dichloroethane 2.07 1.87 1.79 1.98 1.83 1.67 1.87 cis-1,2-Dichloroethane 1.83 1.57 1.59 1.70 1.64 1.45 1.63 1,1,1-Trichloroethane 1.70 1.48 1.48 1.56 1.50 1.36 1.51 Carbon tetrachloride 1.53 1.35 1.34 1.43 1.35 1.23 1.37 1,2-Dichloroethane 1.64 1.65 1.58 1.71 1.63 1.38 1.60 Trichloroethene 0.58 0.49 0.44 0.49 0.48 0.46 0.49 1,2-Dichloropropane 0.53 0.50 0.49 0.53 0.51 0.49 0.51 Bromodichloromethane 0.73 0.68 0.67 0.75 0.73 0.69 0.71 cis-1,3-Dichloropropene 0.69 0.68 0.71 0.79 0.78 0.73 0.73 trans-1,3-Dichloropropene 0.69 0.68 0.71 0.79 <	3.4
cis-1,2-Dichloroethene 1.83 1.57 1.59 1.70 1.64 1.45 1.63 1,1,1-Trichloroethane 1.70 1.48 1.48 1.56 1.50 1.36 1.51 Carbon tetrachloride 1.53 1.35 1.34 1.43 1.35 1.23 1.37 1,2-Dichloroethane 1.64 1.65 1.58 1.71 1.63 1.38 1.60 Trichloroethane 0.58 0.49 0.44 0.49 0.48 0.46 0.49 1,2-Dichloropropane 0.53 0.50 0.49 0.53 0.51 0.49 0.51 Bromodichloromethane 0.73 0.68 0.67 0.75 0.73 0.69 0.71 cis-1,3-Dichloropropene 0.81 0.77 0.78 0.87 0.85 0.81 0.81 trans-1,3-Dichloropropene 0.69 0.68 0.71 0.79 0.78 0.73 0.73	8.0
1,1,1-Trichloroethane 1.70 1.48 1.48 1.56 1.50 1.36 1.51 Carbon tetrachloride 1.53 1.35 1.34 1.43 1.35 1.23 1.37 1,2-Dichloroethane 1.64 1.65 1.58 1.71 1.63 1.38 1.60 Trichloroethane 0.58 0.49 0.44 0.49 0.48 0.46 0.49 1,2-Dichloropropane 0.53 0.50 0.49 0.53 0.51 0.49 0.51 Bromodichloromethane 0.73 0.68 0.67 0.75 0.73 0.69 0.71 cis-1,3-Dichloropropene 0.81 0.77 0.78 0.87 0.85 0.81 0.81 trans-1,3-Dichloropropene 0.69 0.68 0.71 0.79 0.78 0.73 0.73	7.5
Carbon tetrachloride 1.53 1.35 1.34 1.43 1.35 1.23 1.37 1,2-Dichloroethane 1.64 1.65 1.58 1.71 1.63 1.38 1.60 Trichloroethene 0.58 0.49 0.44 0.49 0.48 0.46 0.49 1,2-Dichloropropane 0.53 0.50 0.49 0.53 0.51 0.49 0.51 Bromodichloromethane 0.73 0.68 0.67 0.75 0.73 0.69 0.71 cis-1,3-Dichloropropene 0.81 0.77 0.78 0.87 0.85 0.81 0.81 trans-1,3-Dichloropropene 0.69 0.68 0.71 0.79 0.78 0.73 0.73	8.0
1,2-Dichloroethane 1.64 1.65 1.58 1.71 1.63 1.38 1.60 Trichloroethene 0.58 0.49 0.44 0.49 0.48 0.46 0.49 1,2-Dichloropropane 0.53 0.50 0.49 0.53 0.51 0.49 0.51 Bromodichloromethane 0.73 0.68 0.67 0.75 0.73 0.69 0.71 cis-1,3-Dichloropropene 0.81 0.77 0.78 0.87 0.85 0.81 0.81 trans-1,3-Dichloropropene 0.69 0.68 0.71 0.79 0.78 0.73 0.73	7.5
Trichloroethene 0.58 0.49 0.44 0.49 0.48 0.46 0.49 1,2-Dichloropropane 0.53 0.50 0.49 0.53 0.51 0.49 0.51 Bromodichloromethane 0.73 0.68 0.67 0.75 0.73 0.69 0.71 cis-1,3-Dichloropropene 0.81 0.77 0.78 0.87 0.85 0.81 0.81 trans-1,3-Dichloropropene 0.69 0.68 0.71 0.79 0.78 0.73 0.73	7.3
1,2-Dichloropropane 0.53 0.50 0.49 0.53 0.51 0.49 0.51 Bromodichloromethane 0.73 0.68 0.67 0.75 0.73 0.69 0.71 cis-1,3-Dichloropropene 0.81 0.77 0.78 0.87 0.85 0.81 0.81 trans-1,3-Dichloropropene 0.69 0.68 0.71 0.79 0.78 0.73 0.73	7.0
Bromodichloromethane 0.73 0.68 0.67 0.75 0.73 0.69 0.71 cis-1,3-Dichloropropene 0.81 0.77 0.78 0.87 0.85 0.81 0.81 trans-1,3-Dichloropropene 0.69 0.68 0.71 0.79 0.78 0.73 0.73	10.3
cis-1,3-Dichloropropene 0.81 0.77 0.78 0.87 0.85 0.81 0.81 trans-1,3-Dichloropropene 0.69 0.68 0.71 0.79 0.78 0.73 0.73	3.9
trans-1,3-Dichloropropene 0.69 0.68 0.71 0.79 0.78 0.73 0.73	5.0
trans-1,3-Dictioropropere 0.09 0.00 0.11	4.9
1.1.2-Trichloroethane 0.40 0.40 0.39 0.42 0.42 0.40 0.40	6.3
	3.1
Tetrachloroethene 0.40 0.35 0.34 0.39 0.39 0.40 0.38	7.2
1,3-Dichloropropane 0.76 0.77 0.75 0.81 0.81 0.76 0.77	3.6
Dibromochloromethane 0.61 0.54 0.57 0.64 0.64 0.63 0.60	6.9
1,2-Dibromoethane 0.50 0.49 0.49 0.55 0.56 0.53 0.52	5.5
Chlorobenzene 0.95 0.83 0.80 0.88 0.88 0.86 0.87	5.9
1,1,1,2-Tetrachloroethane 0.35 0.32 0.32 0.36 0.35 0.33 0.34	5.2
Bromoform 0.20 0.19 0.22 0.24 0.25 0.24 0.22	10.9
1,1,2,2-Tetrachloroethane 0.42 0.42 0.45 0.48 0.47 0.44 0.45	5,4
2-Chlorotoluene 0.98 0.84 0.84 0.96 0.92 0.90 0.91	6.4
4-Chlorotoluene 1.03 0.92 0.99 1.12 1.09 1.07 1.04	7.0
1,3-Dichlorobenzene 0.57 0.53 0.56 0.65 0.64 0.63 0.60	8.5
1,4-Dichlorobenzene 0.63 0.57 0.61 0.69 0.68 0.67 0.64	7.2
1,2-Dichlorobenzene 0.56 0.53 0.57 0.64 0.64 0.62 0.59	8.0
1,2,4-Trichlorobenzene 0.26 0.24 0.27 0.32 0.32 0.32 0.29	12.4

ANALYTICAL O

Client: Alpha Analytical - Westborough
Project: L0803223 - ERM BOSTON

Lab Code: MA00030

ETR: 0803046

^LCase: N/A SDG: N/A

Lab ID	Date/Time Analyzed
I1031301	03/13/08 11:42
11031302	03/13/08 12:12
I1031303	03/13/08 12:43
11031304	03/13/08 13:14
I1031305	03/13/08 13:45
-11031306	03/13/08-14:15

Response Factors

		1/	csponse racu	113				
Parameter	2	5	20	50	100	200	Mean	% RSD
Hexachlorobutadiene	0.11	0.083	0.083	0.097	0.096	0.095	0.094	10.7
Dibromofluoromethane	0.90	0.91	0.92	0.91	0.89	0.84	0.90	3.2
1,2-Dichloroethane-d4	0.85	0.91	0.90	0.88	0.84	0.74	0.85	7.1
Toluene-d8	1.28	1.27	1.26	1.30	1.30	1.31	1.29	1.5
4-Bromofluorobenzene	0.57	0.58	0.59	0.61	0,60	0.58	0.59	2.5
Average RSD	4			44.50				6.7

Form VII Calibration Verification Volatile Organics by 8260

Alpha Analytical - Westborough L0803223 - ERM BOSTON Lab Code: MA00030

ETR: 0803046 Lab ID: C1031201

N/A SDG: N/A

	Ave.	CCV	Percent	Deviation
Parameter	RF	RF	Deviation	Limit
Dichlorodifluoromethane	1.29	1.22	5.3	30
Chloromethane	1.34	1.25	6.4	30
Vinyl chloride	0.91	0.86	6.0	20
-Chloroethane-	0.39	0.40	0.6	30
1,1-Dichloroethene	1.43	1.42	0.2	20
Methylene chloride	1.08	1.06	2.3	30
trans-1,2-Dichloroethene	1.45	1.47	0.8	30
1,1-Dichloroethane	1.86	1.81	2.6	30
cis-1,2-Dichloroethene	1.55	1.53	1.1	30
1,1,1-Trichloroethane	1.44	1.44	0.1	30
Carbon tetrachloride	1.34	1.32	1.6	30
1,2-Dichloroethane	1.50	1.49	0.8	30
Trichloroethene	0.46	0.47	2.0	30
1,2-Dichloropropane	0.49	0.49	0.6	20
Bromodichloromethane	0.68	0.69	1.1	30
cis-1,3-Dichloropropene	0.79	0.81	1.4	30
trans-1,3-Dichloropropene	0.71	0.73	2.7	30
1,1,2-Trichloroethane	0.39	0.40	3.0	30
Tetrachloroethene	0.38	0.38	1.5	30
1,3-Dichloropropane	0.75	0.77	2.6	30
Dibromochloromethane	0.59	0.62	4.6	30
1,2-Dibromoethane	0.52	0.54	3.8	30
Chlorobenzene	0.86	0.86	0.6	30
1,1,1,2-Tetrachloroethane	0.33	0.34	2.3	30
Bromoform	0,23	0.25	6.4	30
1,1,2,2-Tetrachloroethane	0.45	0.47	3.8	30
2-Chlorotoluene	0.87	0.88	1.7	30
4-Chlorotoluene	1.02	1.03	1.5	30
1,3-Dichlorobenzene	0.59	0.61	3.8	30
1,4-Dichlorobenzene	0.63	0.64	2.2	30
1,2-Dichlorobenzene	0.59	0.61	4.8	30
1,2,4-Trichlorobenzene	0.28	0.30	4.8	30
Hexachlorobutadiene	0.088	0.090	2.0	30
Dibromofluoromethane	0.88	0.87	1.5	30
1,2-Dichloroethane-d4	0.81	0.79	1.9	30
Toluene-d8	1.25	1.28	2.4	30
4-Bromofluorobenzene	0.57	0.58	1.0	30
Average % D			2.5	

Form VII Calibration Verification Volatile Organics by 8260

Alpha Analytical - Westborough L0803223 - ERM BOSTON

Lab Code: MA00030

ETR: **0803046**Lab ID: **C1031303**

N/A SDG: N/A

<u>.</u>	Ave.	CCV RF	Percent Deviation	Deviation Limit
Parameter	RF	1.45	3.0	30
Dichlorodifluoromethane	1.50		11.2	30
Chloromethane	1.58	1.40	8.2	20
Vinyl chloride	1.07	0.98	·	
Chloroethane	0.51	0.46	9.1	30
1,1-Dichloroethene	1.37	1.27	7.5	20
Methylene chloride	1.04	1.01	2.6	30
trans-1,2-Dichloroethene	1.49	1.35	9.0	30
1,1-Dichloroethane	1.87	1.72	8.3	30
cis-1,2-Dichloroethene	1.63	1.51	7.1	30
1,1,1-Trichloroethane	1.51	1.40	7.6	30
Carbon tetrachloride	1.37	1.26	8.0	30
1,2-Dichloroethane	1.60	1.50	6.0	30
Trichloroethene	0.49	0.47	4.8	30
1,2-Dichloropropane	0.51	0.49	3.1	20
Bromodichloromethane	0.71	0.70	2.0	30
cis-1,3-Dichloropropene	0.81	0.80	1.4	30
trans-1,3-Dichloropropene	0.73	0.73	0.5	30
1,1,2-Trichloroethane	0.40	0.40	1.0	30
Tetrachloroethene	0.38	0.38	0.3	30
1,3-Dichloropropane	0.77	0.76	2.5	30
Dibromochloromethane	0.60	0.62	2.2	30
1,2-Dibromoethane	0.52	0.53	2.4	30
Chlorobenzene	0.87	0.84	3.1	30
1,1,1,2-Tetrachloroethane	0.34	0.33	1.5	30
Bromoform	0.22	0.23	3.9	30
1,1,2,2-Tetrachloroethane	0.45	0.44	2.1	30
2-Chlorotoluene	0.91	0.87	4.0	30
4-Chlorotoluene	1.04	1.03	1.0	30
1.3-Dichlorobenzene	0.60	0.61	1.8	30
1,4-Dichlorobenzene	0.64	0.64	0.3	30
1,2-Dichlorobenzene	0.59	0.60	0.7	30
1,2,4-Trichlorobenzene	0.29	0.30	2.1	30
Hexachlorobutadiene	0.094	0.089	5.7	30
Dibromofluoromethane	0.90	0.88	2.1	30
1,2-Dichloroethane-d4	0.85	0.80	6.6	30
Toluene-d8	1.29	1.31	1.3	30
4-Bromofluorobenzene	0.59	0.59	0.1	30
Average % D		· · · · · · · · · · · · · · · · · · ·	3.9	and the state of t

Form VIII Internal Standard Summary Volatile Organics by 8260

Client: Project:

Alpha Analytical - Westborough **L0803223 - ERM BOSTON**

Lab Code: MA00030 ETR: 0803046

Lab ID: C1031201

ANALYTIC	Case: N/A	4	SDG:	N/A				
		Penta	fluoroben	zene	Fluorok	enzene	Chlorober	zene-D5
		Area		RT	Area	RT	Area	RT
Standard:		309617		5.67	707642	6.40	1005235	10.67
Upper Limit:		619234		6.17	1415284	6.90	2010470	11.17
Lower Limit:		154808		5.17	353821	5.90	502618	10.17
Client ID	Lab ID							
LCS	VW031208LCS01	315245		5.67	722079	6.40	1000948	10.66
LCSD	VW031208LCSD01	311768		5.67	709298	6.40	1003320	10.67
Blank	VW031208B02	299831	-	5.67	689387	6.40	954353	10.66
DEP-19M-20080306-01	0803046-01	285427		5.66	650771	6.40	914750	10.66

N/A - Not Applicable

Area Upper Limit = +100% of internal standard. Area Lower Limit = -50% of internal standard.

RT = Retention Time.

RT Upper Limit = ± 0.5 minutes of internal standard RT.

RT Lower Limit = -0.5 minutes of internal standard RT.

Form VIII Internal Standard Summary Volatile Organics by 8260

Client: Project:

Alpha Analytical - Westborough **L0803223 - ERM BOSTON**

Lab Code: MA00030

ETR: 0803046

Lab ID: C1031303

ANALYATIC	A L Case: N/A		SDG: N	/ A		200 121 0 200	
		Pentafl	uorobenzene	Flu	orobenzene	Chlorob	enzene-D5
		Area	RT	Area	RT	Area	RT
Standard:		300650	5.63	681462	6.37	998678	10.63
Upper Limit:		601300	6.13	1362924	6.87	1997356	11.13
Lower Limit:		150325	5.13	340731	5.87	499339	10.13
Client ID	Lab ID			200		one and the second	
LCS	VW031308LCS04	306283	5.64	683768	6.37	987486	10.63
LCSD	VW031308LCSD04	304003	5.64	675769	6.37	975180	10.63
Blank	VW031308B08	290770	5.64	666016	6.37	933650	10.63
MW-264M-20080306-01	0803046-02	283645	5.64	636285	6.37	913522	10.63

N/A - Not Applicable

Area Upper Limit = +100% of internal standard. Area Lower Limit = -50% of internal standard. RT = Retention Time.

RT Upper Limit = +0.5 minutes of internal standard RT.

RT Lower Limit = -0.5 minutes of internal standard RT.

Chain of Custody Records

1 Lab: 3 /7/08 ALPHA Job#: 2 2803223	Deliverables		Regulatory Requirements/Report Limits		MAMCEBRESHMETHECERTAINTY III CAN ELECTRON CONTINUE OF THE PROTOCOLUMN TO THE PROTOCOLUMN	Ara MCD Analytical Mathods Davi irad?		SAMPLEHANDLING			The Lab to do	Sample Specific Comments	7					Search legibly and	
TODY PAGE OF Date Rec'd in Lab:	(1) (1) (1) (1) (1)	Ø	Way and mil	State Fee	JASSA TAMTERY	Time	ON SALE	Time:	EX 76%	W STATE OF THE STA	ollection Sample S	unais V	14:45 GW EB				8	ر ج	
 CHAIN OF CUSTO		X: 508-822-3283	Project #	C. Loth There Project Man		20	5440 - FOX-F101	Antten Com win Date Due:	Other Project Specific Requirements/Comments/Detection Li		Sample iD	10-70508						PLEASEANSWERQUESTIONSABOVEI	
∆.PHA	WESTBORO, MA TEL: 508-898-9220	FAX: 508-898-9193 FA	Clent FOAL GIOCADO	Address: 2 0.0	An Charles	Phone: 617-6	Fax: 10/7-7	Email: ,	Other Project S		ALPHA Lab ID	(53227	7					PLEASEANSWE	

CHAIN OF	CHAIN OF CUSTODY PAGE 1 OF]	Date Recid in Lab:	alphajob#: 0803046
ADSTRANDARMA WESTBORO, MA TEL: 508-899-9220 TEL: 508-822-9300 FAX: 508-888-9193 FAX: 508-822-3288	Project Information Project Name:	Report Information - Data Deliverables Billing Information □ FAX □ EMAIL □ Same as Client info	mation lent info PQ #:
atic	Project Location:	☐ ADEx ☐ Add'i Deliverables	
Client: \$10m; Arvel, 4000	Project #:	ements/Repo	
	Project Manager: Havy Dezo	Method State State	(- (c
Phone:	Turn-Around Time		CONFIDENCE PROTOCOLS
Fax:		☐ Yes ☐ No Are CT RCP (Reasonable Confidence Protocols) Required?	ols) Required?
Email:	□ Standard □ RUSH (only confirmed if pre-approved)) □ Date Due: 3/14/6 prime:		SAMPLEHANDLING
These samples have been previously analyzed by Alpha Other Project Specific Requirements/Comments/Detection Limits:	ents/Detection Limits:	2978 \$47VW	Filtration L Done
ALPHA LabilD (Lab Use Only)	Collection Sample Sampler's Date Time Matrix Initials	- / / / / / / / / / / / / / / / / / / /	(Please specify below) E
1-Eeeeq107 -	00 SIGIT 101918 (C)		7
7 7	7		6
			-
မှာ PLEASE ANSWER QUESTIONS ABOVE!	Container Type		 Please print clearly, legibly and
	Preservative		completely. Samples can not be logged in and turnaround time clock
MA MCP or CT RCP?	Relinquished By: Date/Time	A Received By: Date/Time will	will not start until any ambiguities are resolved. All samples submitted are
	1 100 0000		subject to Alpha's Payment Terms.

Sample Delivery Group Form

Laboratory Job No: 1-080 3223 Clier	nt: <u> </u>	1-Boster	<u> </u>
Laboratory Job No: 2080 3223 Clier Receipt Date/Time: 3/7/08 1715	SDG Revie	wer:u	m
Samples Delivered By:	····	 	
[] Alpha Courier [] Client [] UPS [] FedEx			
Bill of Laden: []Yes [] Unavailable Tracking #:			
Chain of Custody: Present [] Absent:	t/Broken		
Cooler/Sample Temperature: Is/Ice/Blue Ice present?			
Temp taken from: Temp Blank:(a) 2.2 (b) IR Gun: (a) (b)	_ (c)	(d)	(e)
IR Gun: (a) (b)	(c)	(d)	_ (e)
Was Temp: √12-6 Celsius			
[] <2 Celsius were samples froze [] >6 Celsius were samples delive	en upon receip ered direct fro	ot? [] Yes [] m site? [] Ye	No es[]No
Containers Received: [] Intact [] Broken/Leaking Sample IDs: Sample IDs:			
All Containers Accounted For? Yes			
Extra Samples Received? [1]No			•
[] Yes:			
Do Sample Labels and COC agree? [] Yes			
[] No:			· -
Are Samples in Appropriate Containers? [/] Yes [] No:			
Are samples rec'd within holding time? Pes] No:			
Please note: the analysis of pH will always be performed beyond the regulatory-requir	ed holding time of	15 min. from the	time of collection.
pH of samples upon receipt: [] N/A // <2 [] >12 and/or [/]			
Are samples properly preserved? [Yes [] No			
Initial pH= preserved In-House with [] HCL [] H ₂ SO ₄ [] HNO ₃	< <final ph="</td"><td>>></td><td>:</td></final>	>>	:
Other Issues:			
Chlorine Check: N/A [] Present [] Absent			
VOA/VPH vials: [Yes [] No			
Aqueous: vials contain head space? [] No [] Yes :			
V 11 11 11 11 11 11 11 11 11 11 11 11 11			
Reagent H ₂ O Preserved vials Frozen @ date/time: Frozen by Client? [] No [] Yes @ date/ti			_
, , , , , , , , , , , , , , , , , , ,			F 3 A1/A
Vas Client notified of any discrepancies listed above? [Yes: Call Tracker #	[]Yes	[] No	[] N/A

Sample Receipt Checklist

Client: M. A. A. A. A. T. D	Receipt Date: 3/4/08	1 agc 01
Project: 40803223 - CRM	Log-in Date:	3/12/08
ETR#: 0803046	Inspection by: Jo	Login by:
ALL SECTIONS BELOW MUST BE COMPLE		omments / Notes
Were samples shipped? Yes, FedEx / UPS / Other:		
No, Alpha Analytical Courier pick-up	Hand delivered Samp	le storage refrigerator #: <u>Vo A</u>
Is bill of lading retained? Yes, Tracking #:	Samp	le storage freezer #:
No, Unavailable / 🐼		
Number of coolers received for this project delivery:		
Indicate cooler temperature upon opening (if multiple coolers, record	all temps): Coole	r 2: Cooler 3:
Note: If all coolers are 2-6°C, use one checklist, if NOT, use separate all samples received above 6°C.	checklists and note Coole	r 4: Cooler 5:
Cooler 1: Temperature(s) taken from: 5 IR Gun, 6 Temp. Bla	nk, / NA	r 6: Cooler 7:
Were samples received on ice? (Yes) / No	More:	
Chain-of-Custody present? (Yes) / No		
Complete? Yes / No		
Custody seals present on Cooler? Yes / (No)		
on Bottles? Yes / No Y		•
Intact? Yes / No / NA Note: Affix custody seals to back of this page.		
	f·No, list samples: →	
Did VOA/VPH waters contain headspace (>5mm)? Yes No NA I	f Yes, list samples: →	•
Were 5035 VOA soils, or VPH soils, covered with MeOH? Yes	/ No / (A) f No, list samples:	
Was a sufficient amount of sample received for each test indicated on (ves.) No	the COC? f No, list samples: →	
If chemical preservation is appropriate - Were samples field preserved? Yes / No /	NA Chem sampl	ical preservation OK for ALL es?
XC=HCl		Yes / No / NA
☐H=NaOH ☐ N=HNO ₃ ☐ Other: ☐ U= Unk	I -	list samples below:
Preservation (pH) verified at lab for EVERY bottle? (Not: VOA / VP)	I / Sulfide)	
YES: <2 or >12 (CN) or NO If No, why?:	N.	
Were samples received within hold time? Yes No If	No, list samples: →	
	Yes, list samples: →	
Was the Project Manager notified of any other problems? Yes /	No / NA	
Project Manager Acknowledgement: Date:	Pleas	e use back for any additional notes!

Certificate/Approval Program Summary

Method numbers assume the most recent EPA revisions. For a complete listing of analytes for the referenced methods please contact your Alpha Woods Hole Lab Project Manager or the Quality Assurance Manager.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141 - Wastewater (General Chemistry: EPA 120.1, 150.1, 160.1, 160.2, 180.1, 300.0, 310.1, 335.2; Metals: 200.8, 245.1; Organics: 608-PCB, ETPH) Solid Waste/Soil (General Chemistry: 1010, 9010/9014, 9045, 9060; Metals: 6020, 7470, 7471; Organics: 8081, 8082, 8260, 8270, ETPH).

Florida Department of Health Certificate/Lab ID: E87814 - Primary NELAP Accreditation Authority for Air & Emissions. Secondary NELAP Accreditation for Wastwater and Solid & Hazardous Waste. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 335.2, SM2320B, SM2340B, SM2540G, SM4500NH3; Metals: 245.1; Organics: 608-PCB). Solid and Hazardous Waste (General Chemistry: 9010/9014, 9045, 9050, 9056, 9065, Reactivity 7.3; Metals: 6020, 7470, 7471; Organics: 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090 - Primary NELAP Accrediting Authority for Wastewater, Solid & Hazardous Waste. *Wastewater* (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 376.2, 9010/9014, 9056, SM2540G; Metals: 200.8, 245.1, 6020; Organics: 608-PCB, 8015-DRO, 8081, 8082, 8260, 8270). *Solid and Hazardous Waste* (General Chemistry: 1010, 1311, 9010/9014, 9040, 9045, 9056, 9060, Reactivity 7.3; Metals: 6020, 7196, 7470, 7471; Organics: 8015-DRO, 8081, 8082, 8260, 8270).

Maine Department of Human Services Certificate/Lab ID: MA0030 - Wastewater (General Chemistry: EPA 120.1/SM2510B, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 335.2; Metals: EPA 245.1; Organics: 608-PCB).

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030 - Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 335.2; Metals: EPA 245.1; Organics: EPA 608-PCB).

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206 - Secondary NELAP Accreditation. *Wastewater* (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 376.2, SM2540G; Metals: 200.8, 245.4; Organics: 608-PCB).

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 376.2, 9010/9014, 9056, SM2540G; Metals: 200.8, 245.1 6020; Organics: 608-PCB, 8081, 8082, 8260, 8270). Solid & Hazardous Waste (General Chemistry: EPA 1010, 1311, 9010/9014, 9040, 9045, 9056, 9060; Metals: 6020, 7196, 7470, 7471; Organics: 8015-DRO, 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

New York Department of Health Certificate/Lab ID: 11627 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 376.2; Metals: 200.8, 245.1; Organics: 608-PCB). Solid and Hazardous Waste (General Chemistry: EPA 1010, 1311; : 200.8; 8020,;7041; Organics: 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

Rhode Island Department of Health Certificate/Lab ID: LAO00289 - Chemistry: Organic and Inorganic in Non-Poratable Water, Wastewater/Sewage and Soil (Refer to LADEO and MADEP certificates for method numbers.)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-02089 - Registered laboratory

U.S. Army Corps of Engineers

Department of the Navy

Client Name: ERM

Contact: Jason Flattery

Address: 399 Boyleston Street

6th Floor

Boston, MA 02116

Page: Page 2 of 15 Lab Proj #: P0803069

Report Date: 03/18/08 Client Proj Name: Wayland

Client Proj #: Wayland

Sample Description	Matrix	Lab Sample		Sampled Date/Time	<u>Received</u> 07 Mar. 08 10:23					
DEP-19M-20080306-01	vvater	Water P0803069-01		06 Mar. 08 16:15	07 Mar. 08 10.2	23				
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	Ву				
RiskAnalysis										
N Ethane	0.039	0.025	ug/L	AM20GAX	3/17/08	rw				
N Ethene	0.130	0.025	ug/L	AM20GAX	3/17/08	rw				
N Methane	0.480	0.100	ug/L	AM20GAX	3/17/08	rw				

Client Name: ERM

Contact: Jason Flattery

Address: 399 Boyleston Street

6th Floor

Boston, MA 02116

Page: Page 4 of 15 Lab Proj #: P0803069

Report Date: 03/18/08 Client Proj Name: Wayland

Client Proj #: Wayland

Sample Description	<u>Matrix</u>	Lab Sample	<u>#</u>	Sampled Date/Time	Received	
MW-264M-20080306-01	Water	P0803069-	03	06 Mar. 08 14:45	07 Mar. 08 10:2	23
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	Ву
RiskAnalysis						
N Ethane	<0.025	0.025	ug/L	AM20GAX	3/17/08	rw
N Ethene	0.200	0.025	ug/L	AM20GAX	3/17/08	rw
N Methane	7.900	0.100	ug/L	AM20GAX	3/17/08	rw

130 Research Lane, Suite 2 Guelph, Ontario N1G 5G3 Phone (519) 822-2265 Fax (519) 822-3151

Certificate of Analysis: Quantitative Gene-Trac Dehalococcoides Assay

Customer: Jason Flattery, ERMSiREM Reference: S-1251Project: Raytheon WaylandReport Issued: 25-Mar-08

Customer Reference: 0079387 Data Files: DHC-UP-0437/0437

QPCR-0325/QPCR check-gel-0232

Table 1: Test Results

Customer Sample ID	SiREM Sample ID	Sample Collection Date	Sample Matrix	Percent Dhc ^A	<i>Dehalococcoides</i> Enumeration ^B
MW-264M-20080306-01	DHC-3789	6-Mar-08	Groundwater	NA ⁽¹⁾	ND ⁽²⁾

Notes:

NA = not applicable ND= not detected

Analyst:

Jennifer Wilkinson

Biotechnology Technologist

Approved:

Ximena Druar, B.Sc.

Molecular Biology Coordinator

^A Percent *Dehalococcoides* (Dhc) in microbial population. This value is calculated by dividing the number of Dhc 16S ribosomal ribonucleic acid (rRNA) gene copies by the total number of bacteria as estimated by the mass of DNA extracted from the sample. Range represents normal variation in Dhc enumeration.

^BBased on quantification of Dhc 16S rRNA gene copies. Dhc are generally reported to contain one 16S rRNA gene copy per cell; therefore, this number is often interpreted to represent the number of Dhc cells present in the sample.

¹Not applicable as *Dehalococcoides* not detected.

²Not detected. The quantitation limit is 4 x 10³/liter.

Table 2: Detailed Test Parameters, Gene-Trac Test Reference S-1251

Customer Sample ID	MW-264M-20080306-01
SiREM Test ID	DHC-3789
Date Received	7-Mar-08
Sample Temperature	8.5 °C
Volume Used for DNA Extraction	500 mL
DNA Extraction Date	18-Mar-08
DNA Concentration in Sample (extractable)	1102 ng/L
Extracted DNA Quality Test (universal PCR primers)	ND
Secondary DNA Purification	R
DNA Repurification Date	39531
Extracted DNA Quality Test (after repurification)	Passed
Dhc qPCR Analysis Date	24-Mar-08
qPCR Controls (see Table 3)	Passed
Comments	

Notes:

Refer to Table 3 for detailed results of controls.

NA = not applicable

ND = not detected

mL = milliliters

PCR = polymerase chain reaction

qPCR = quantitative PCR

Dhc = Dehalococcoides

ng/L = nanograms per liter

NR = not required

R = required

DNA = Deoxyribonucleic acid

°C = degrees Celsius

Laboratory Control	Analysis Date	Copies per Reaction		Recovered Dhc 16S rRNA Gene Copies per Reaction	Comments
Positive Control Low Concentration	24-Mar-08	qPCR with cloned Dhc gene (9.13 x 10 ⁵ copies)	9.13 x 10 ⁵	1.33 x 10 ⁶	Normal ¹
Positive Control High Concentration	24-Mar-08	qPCR with cloned Dhc gene (9.13 x 10 ⁷ copies)	9.13 x 10 ⁷	9.05 x 10 ⁷	Normal ¹
DNA Extraction Blank	24-Mar-08	DNA extraction sterile water (DB-0737)	0	ND	Normal
Negative Control	24-Mar-08	Tris Reagent Blank	0	ND	Normal

Notes:

Dhc = Dehalococcoides

DNA = Deoxyribonucleic acid

NA = not applicable

ND = not detected

qPCR = quantitative PCR

16S rRNA = 16S ribosomal ribonucleic acid

¹ Within defined limits of +/- 50%

Chain-of-Custody Form

130 Research Lane, Suite 2 C Guelph, Ontario, Canada N1G 5G3 Phone (519) 822-2265 or toll free 1-866-251-1747 Fax (519) 822-3151

lab#	
~.	a promise manager &
	1 5000

	i i i i i i i i i i i i i i i i i i i	
www.siremlab.com	Page	O

Project Name	Wallan	Jayland Project # 0079387							Analysis											
I D	Rottery.	'		·	<u> </u>	<i></i>		reser	vative	.	T	Т						Γ		
C:1 A -1-1	later	(A) - (2)		~						Novel	\rightarrow	\rightarrow	\rightarrow		\rightarrow	\vdash		<u> </u>	\longrightarrow	Preservative Key
Company	111101	C OV	N . CC	300		<u>-</u>				12	4/								//	0. None
Address		and and	1 :						K	19	/ /		/	/					/ /	1, HCL 2, Other
377 198	16ton S	1 \	500 kg	n, IJA	05/1	99			ž /	[][[· -/	′ /	/ /	/ /	/	/ /	/ /	3. Other
(- 2/0) - (10	0 360	Fax # 6	7 - 2	67-6	F447	f L	l		1/	ا/نے									/	4. Other
Sampler's Signature	Sampler's Printed Ezra Bengerin							3										5. Other		
Client Semple ID	Lab ID		Sam	oling	1	# #	of			f - f						1		f	<i>!</i>	
			Date	Time	Matrix	Conta														Other Information
MW-246-20080306			3/6/08	1500	6M			\leq	/			\dashv								
MW-764M-20080306				1445		1			$\frac{\lambda}{\lambda}$											
MW-265M-20030306-	91			०९५५		-		\geq	X											
MW-14Aa-2003030				1345				Δ	<u> </u>	 										
11W-766Mb-2008039			_	1572	-			\geq	X	-										
NW-7675-20036306				000		$\vdash \vdash$		\times	<u>Y</u>	 										
MU-767M-2008633				1120		$\vdash \vdash$		\times	$\frac{x}{y}$											
MM-7P84-5003030				1145		++		\subseteq	7					······································						
MM-221-2008036				1230		 		×	$\frac{x}{X}$											
Example Possio			-	1630		<u>I V</u>		<u> </u>	_	<u> </u>	77 - 17 - 17				<u> </u>					
Cooler Condition:	.7		P.O. #	067°	Invoice In	1.0	n											For La	b Use Only	
Cooler Temperature:										-										
				Sc.69~	Fla	ther	4													
Custody Seals: Yes	No 🔯					1														
			Quotatio	1#																
Relinquished By:		leceived By:			Relinquis	shed By:		T		Re	eceive	d Bv:	****		T		Relin	quishe	d Rv	Down I.S.
Signature	Signature - J. M.	7 k	* * * * * * * * * * * * * * * * * * * *	Signature	•			Sig	gnature			-,-			Signa	ature	**********	-1 m131 (6	by.	Received By: Signature
Printed				Printed	***************************************		***************************************	Dri	nted						Dulari				····	
Name Firm	Name ✓ 6€	1/Kim	5 cm	Name Firm	·		····	Na	me						Printe Name			*******		Printed Name
Date/Time	Firm S, RC	vj		Date/Time		· · · · · · · · · · · · · · · · · · ·			m te/Time				***************************************		Firm			-		Firm
Distribution: White - Return to Originator: Yellow - L	Date/Time / //	18 / 3 Hough	30	- Sectionic				Uai	œ/ i ime	-					Date/	lime				Date/T)me

ΔLPHA	CHAIN O	CUS	STOE	Y PAG	3EC	»F 2_	Date	Rec'	d in La	ıb:					ALF	PHA	Job #:		5-12	51	, more contractions
WESTBORO, MA TEL: 508-898-9220 FAX: 508-898-9193 Client Informatio Client: ERM Address: 35(4) Those of the control of the	RAYNHAM,MA TEL: 508-822-9300 FAX: 508-822-3288	Project Na Project Lo Project #: Project Ma ALPHA Q	Information Value Value	on Hlan Voylad 5, fl	Weyk MA	m	Regulation National N	FAX ADEX ulator	y Req Progra	ation - El Ac Uireme MPTIV Are I	MAIL Id'I Del ents/Ro ECER	eport l Cri	es Limit iteria Y(s CTRE	Billi □ Sa ASC	ing ling line a	nformations Client in	on lío P	O#:	DCOLS	6
Email: \\ \(\) \(ave been previously analyzed by Alpha Decific Requirements/Comn		ection Lir	□ RUSH (c	Time:	Sampler's	7.00.	Sic 7									, s	SAMPI Filtration Dono Noti Lab Preser Lab	LE HANDLIN on e needed to do vation	IG	TOTAL # BOTTL
(Lab Use Only)	MW-552-20080306-0		Date	1442 1441 2400	Matrix	Initials	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									Sample	Spec	ific Commen	ts	1-0
IS YOUR I	or CT RCP?	Relinqui	shed By:		Pro	ainer Type eservative te/Time	PA	P A A C C C C C C C C C C	Rece	ived By	: 			Date/		34	complete logged in will not s resolved	ely. Sand to tart un . All so o Alpha	early, legibly amples can n uniaround thi uniaround mbig amples subr a's Paymen de.	not be me clos guities mitted a	are are